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Magnetic Field of Magnetized Ellipsoids 

I. Terechkine 

As the quality factor of accelerating cavities in LCLS-II cryomodules is expected to exceed 

3·1010, magnetic field hygiene becomes a never ending theme for multiple discussions. The level 

of magnetic field in the cryomodules is significantly reduced by using steel as a material for the 

vacuum vessel and compensating coils to effectively cancel the longitudinal component of the 

magnetic field; nevertheless, different sub-systems in the cryomodule can use magnetized parts 

(e.g. step motors), or hardened magnetic materials (e.g. bearings), or soft magnetics (e.g. steel 

bolts). Some non-magnetic materials or materials with low permeability can undergo phase 

transformation after unintentional heat treatment (e.g. by welding) or after cooling down below 

the phase transition threshold temperature. To get a simple gauge of potential threat to the 

expected performance of the cryomodules, a study was made with the goal to find a set of 

expressions that could be used for evaluation of the magnetic field introduced by the magnetized 

parts or the parts made of magnetic materials in a background magnetic field. For simplicity, 

ellipsoid was used to reproduce the shape of the parts as well-known theoretical expressions can 

be used; main conclusions of the study do not depend of the shape though. Practical system of 

units will be used, where the field in the magnetic material can be written as 

B = µ0µrH + M     /1/ 

It is known (e.g. see [1]) that the magnetic potential of a magnetic dipole m in vacuum can be 

expressed as:   

Um = 1/(4πµ0)·[m x r]/r3 = 1/(4πµ0)·[3(mr0)·r0/r3 – m/r3]   /2/ 

Here the bold font is used to show vectors; r0 is the unit vector in the direction of the radius r. 

This expression converges to the following expressions for the z-component of the magnetic 

field in the z direction (vector z0 is parallel to the long axis 2a of an ellipsoid, which is 

magnetized along this direction) in the perpendicular direction r0 along the short axis 2b: 

Along Z:     Hz = 2m/(4πµ0r
3);         /3a/ 

Along R:   Hz = -m/(4πµ0r
3).         /3b/ 

For the flat contour, m = µ0µrI·A, where A is the surface area (vector) enclosed by the contour. 

For a magnetized ellipsoid with unit permeability, we can use the magnetization M to evaluate 

the efficient current density: jτ = M/µ0. In this case it is close to the value of the internal magnetic 

field Hin. Changing contour surface area is taken care by integration; as a result, we have 

m ≈ 4/3πµrµ0·ab2Hin  or  m ≈ µrµ0·V·Hin    /4/ 

As an example, let’s use the next values for the half-axis of the ellipsoid: a = 5 mm, b = 1 mm. 

Let’s first consider a fully magnetized steel piece with the remnant field of 1 T: µr = 1 and 

µ0·Hin=1 T. Fig. 1 shows a graph comparing results of modeling (COMSOL) and using 

analytical expression for the Z field component along the Z axis. The field drops two orders of 

magnitude just 50 mm from the center of the ellipsoid. 
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One can see that the field is proportional to the magnetization and to the volume of the sample, 

so it is straightforward to make scaling when needed.  

 

Fig. 1. Magnetic field of the test ellipsoid with magnetization 1 T along the long axis 

In the case of the magnetization induced in the ellipsoid by the external field H0, we need to 

take into account the following expressions for the magnetization:  

M = µ0(µr – 1)Hi     /5/ 

Hi = H0/[1+N·(µr -1)]      /6/ 

Here N is a demagnetization factor that can be found for ellipsoids using the next formula that 

uses parameter p = a/b when it is higher than 1: 

N = 1/(p2-1)·{p/√(p2-1)·ln[p+√(p2-1]-1}       /7/  

Graph on Fig. 2 shows values of the parameter p in the range from 0 to 10. 

 

Fig. 2. Demagnetization factor for a range of parameter p = a/b from 0 to 10 
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For the previously used ellipsoid, p = 5, and N = 0.056. 

Then magnetization  

M = µ0(µr -1)H0/[1+N·(µr -1)]    /8/ 

The magnetic moment is then 

m = µr/(µr – 1)V·M = V· µ0H0(µr – 1)/[1+N·(µr -1)]   /9/ 

Let’s assume the external field of 1 G (1E-4 T or 80 A/m) and µr = 200  

Then m = 3.5E-11 T·m3. Graphs that compare results obtained by modeling (COMSOL) and by 

using the theoretical expression for the field of a magnetic dipole can be found in Fig. 3.  

As the internal field flux density in this case is 17 G, it is ~600 times smaller than in the previous 

case, we expect the same ratio of the two magnetic moments and the fields, which we sure have. 

 
Fig. 3. Magnetic field of the test ellipsoid with μr = 200 placed in the external 1 G field. 

Field is decaying very fast near the sharp end of the ellipsoid; just 2 mm off the end, the field 

changes from ~17 G to ~1.2 G, which is illustrated by the following figure. 

 

Fig. 4. Fast field decay near the end of the ellipsoid. 
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 In the transverse direction the field near the ellipsoid is lower than the background; it 

reaches back to the background at r ≈ 10 mm, which is the scale of the system. 

If we use a magnetized sphere with μr ≈ 1, the results are fully compatible with what was 

found earlier for the ellipsoid. 

If a sphere with μr >1 is placed in a background magnetic field, the induced magnetization 

can be found using the following expression: 

M = 3μ0H0·(μr-1)/(μr+2),    /10/ 

which is what expression /5/ can be converted to with N = 1/3 and p = 1 in /7/. If μr >>1, the 

magnetization is three times stronger than the background field. The value of the induced 

magnetic dipole is found by integration of the magnetization though the volume of the sphere, 

which gives 

m = 3V·μ0H0·(μr-1)/(μr+2) = 4π·a3·μ0H0·(μr-1)/(μr+2) 

This expression can also be obtained by using /9/ with N = 1/3. 

Graphs that compare results obtained by modeling (COMSOL) and by using the theoretical 

expression for the field in this case can be found in Fig. 5. Flux density inside the sphere in this 

case is ~3 G.  

 

Fig. 5. Magnetic field of the test sphere (r0 = 2.5 mm, μr = 200) placed in the external 1 G field. 

 

Let’s take a look at two examples that illustrate how to use the suggested approach to analyze 

possible threats of using magnetized objects in a cryomodule.   
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Example 1 

Let’s assume that we have a steel bolt with the aspect ratio 5 used somewhere in a 

cryomodule with the external magnetic field B0. As the material is in the relatively low field, the 

permeability of steel is also relatively low – we assume μr = 200. To evaluate the impact of this 

element on the field in the cryomodule, we will use the formulas for the ellipsoid with the aspect 

ratio p = a/b = 5. The external field is directed along the long axis.  

Let’s find the maximum allowed volume (or diameter, which is equivalent) of the bolt 

assuming that at the distance r0 = 0.1 m the disturbance of the background field must not exceed 

10%, that is the magnetic field associated with the induced magnetization is ten times lower than 

the background field: Hm < 0.1H0. Using expression /9/ for the induced magnetic moment: 

m = (μr-1)μ0VH0 / [1+N(μr-1)], 

and expression /3a/ for the magnetic field along the long axis of the magnetized ellipse, we come 

to the next expression for the total volume of the material of this particular shape to induce the 

dangerous field disturbance: 

V = 2π·(r0)
3·Hi/H0·[1+N(μr – 1)]/(μr – 1)   /11/ 

With r0 = 0.1 m, Hi/H0 = 0.1, µr = 200, and N = 0.056, we get V ≈ 35 cm3, which corresponds to 

the equivalent cylinder with the length ~11 cm and the diameter ~2 cm.  

In the direction perpendicular to the long axis, the background field will be reduced by ~5%. 

If the background field is 0.1 G, the magnetic field inside of this object will reach ~1.6 G. If 

to measure the field in the vicinity of the object in the environment of the earth field (0.5 G), one 

can see ~8 G field. This a near zone where the formulas /3/ cannot be applied, but they will give 

close results though if the distance from the end exceeds several diameters of the object. For this 

example, where the length of the ellipsoid is ~125 mm and diameter is ~25 mm, the increase of 

the field at 100 mm from the center should be higher than 10%. Magnetic modeling gives ~15% 

increase: magnetic field measured at 100 mm from the center of the ellipsoid placed in 8 A/m 

background field is 9.3 A/m. 

 

Example 2 

Let’s evaluate allowed magnetization of steel ball (Ø6 mm) of a ball bearing so that the field 

generated at the distance 50 mm from its center would not exceed one tenth of the background 

field B0 = 100 mG.  

In accordance with /4/, m = BinV, where Bin is the flux density inside the ball (and hence the 

maximum field measured near its surface). Using /3a/ we can get the following equation  

B0/10 > BinV/2πr3     /12/ 

So the field measured at the surface of the ball must be  

Bin < πr3B0/5V = 3/20·(r/r0)
3·B0 ≈ 69 G   /13/ 

If the balls in a bearing are magnetized stochastically, mush higher magnetization is probably 

acceptable. If the several balls in a bearing are magnetized in the same direction, some attention 

is needed as resulting shape becomes more complicated and the characteristic dimension 

becomes larger and expression /3/ becomes valid at larger distances.   
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Conclusion 

As a result of this study the following conclusions can be made: 

1. Magnetic field generated by a magnetized object can be evaluated using the “magnetic 

moment” approach. 

2. Using magnetic modeling, it is possible to find equivalent magnetic moment of any 

object. 

3. The magnetic moment scales linearly with the volume of the object and with the 

magnetization. 

4. Measuring magnetic field in the vicinity of a part that is suspected to be a source of 

undesired magnetic field does not provide reliable information about the strength of its induced 

magnetic moment, but it still can be used to evaluate residual flux density in a magnetic object. 

 

The presence of a magnetic shielding around cavities in a cryomodule requires using entirely 

different approach. The shield itself usually significantly reduce the background field in the area 

around the cavity; nevertheless technological holes in the shields must be taken into account 

during direct and specific modeling when parts or assemblies are suspected in being magnetic 

pollutants. This kind of modeling is being made; results will be posted in future notes. 
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